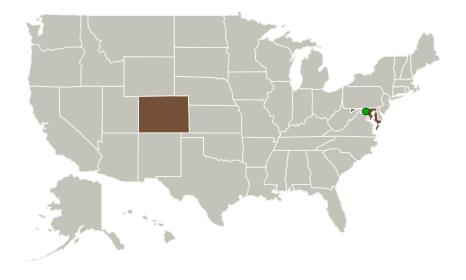
Small Business Innovation Research/Small Business Tech Transfer

Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings, Phase I



Completed Technology Project (2010 - 2010)

Project Introduction

This project will develop radiation resistant hybrid Lotus Effect photoelectrocatalytic self-cleaning anti-contamination coatings for application to Lunar Operations. The coatings will be demonstrated to operate in galactic cosmic ray (GCR) and solar event proton (SEP) environments. The coatings will have low surface energy to significantly reduce Van der Waals forces (superhydrophobicity), which also reduce contaminant adhesion and will integrate a biocide stoichiometric and photoelectrocatalytic component which has been successfully demonstrated against a range of biological pathogens and toxic chemicals. The Lotus-effect sheds particles, such as dust and spores, by reducing the surface energy and the amount of surface area needed for attachment by utilizing a nano-textured structure to achieve its anticontamination and self-cleaning properties thereby minimizing contaminant accumulation on surfaces. Dust mitigation coatings on various surfaces will be developed for > 99% removal of initial dust contaminant compared to conventional materials, without damage to the surface being cleaned. The coatings utilize a unique approach for biocide and chemical neutralization and will simplify decontamination procedures by neutralizing microorganisms or harmful chemicals on surfaces of structures and equipment in low gravity, as well as in extraterrestrial environments, preventing potential catastrophic contamination.

Primary U.S. Work Locations and Key Partners

Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings, Phase I

Completed Technology Project (2010 - 2010)

Organizations Performing Work	Role	Туре	Location
International Photonics Consultants	Lead Organization	Industry	Pagosa Springs, Colorado
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations	
Colorado	Maryland

Project Transitions

January 2010: Project Start

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139366)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

International Photonics Consultants

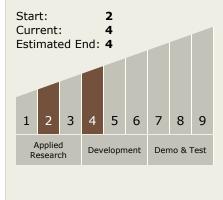
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Edward W Taylor

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings, Phase I

Completed Technology Project (2010 - 2010)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.2 Mission
 Infrastructure,
 Sustainability, and
 Supportability
 - ☐ TX07.2.5 Particulate
 Contamination
 Prevention and
 Mitigation

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

